Conductivity of Electropolymerized Thiophene Films: Effect of Fused-Ring Thiophenes as the Monomer (2025)

    Organic Electronic Devices

    • Ganlin Liu

      Ganlin Liu

      State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 510640, P.R. China

      More by Ganlin Liu

    • Xiangyu Zhang*

      Xiangyu Zhang

      State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 510640, P.R. China

      *Email: [emailprotected]

      More by Xiangyu Zhang

    • Bohan Wang

      Bohan Wang

      State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 510640, P.R. China

      More by Bohan Wang

    • Xinyu Wang

      Xinyu Wang

      State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 510640, P.R. China

      More by Xinyu Wang

    • Haichao Liu

      Haichao Liu

      State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China

      More by Haichao Liu

    • Cheng Zhou

      Cheng Zhou

      State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 510640, P.R. China

      More by Cheng Zhou

    • Bing Yang

      Bing Yang

      State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China

      More by Bing Yang

    • Liang Yao*

      Liang Yao

      State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 510640, P.R. China

      *Email: [emailprotected]

      More by Liang Yao

    • Yuguang Ma

      Yuguang Ma

      State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 510640, P.R. China

      More by Yuguang Ma

    Other Access OptionsSupporting Information (1)

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2025, XXXX, XXX, XXX-XXX

    Click to copy citationCitation copied!

    https://pubs.acs.org/doi/10.1021/acsami.5c01664

    Published April 21, 2025

    Publication History

    • Received

    • Accepted

    • Revised

    • Published

      online

    research-article

    © 2025 American Chemical Society

    Request reuse permissions

    Abstract

    Click to copy section linkSection link copied!

    Conductivity of Electropolymerized Thiophene Films: Effect of Fused-Ring Thiophenes as the Monomer (6)

    Polythiophene and its derivatives have emerged as promising candidates for next-generation electronic applications due to their tunable conductivity and ease of synthesis via electropolymerization. Although fused-ring thiophene monomers have attracted considerable interest for the fabrication of polythiophene films with enhanced electronic properties, systematic investigations comparing their conductivities and elucidating the structural influence of fused-ring motifs remain limited. In this study, we explore the electropolymerization behavior of various fused-ring thiophene monomers and systematically evaluate their conductivities through in situ electrochemical conductance measurements. Complemented by theoretical calculations of monomer aromaticity using nucleus-independent chemical shift (NICS) and multicenter bond index (MCBI) analyses, our findings reveal that the inhomogeneous aromaticity of fused thiophene rings plays a pivotal role in determining the conductivity of the resulting polythiophene films.

    ACS Publications

    © 2025 American Chemical Society

    Subjects

    what are subjects

    Article subjects are automatically applied from the ACS Subject Taxonomy and describe the scientific concepts and themes of the article.

    • Electrical conductivity
    • Electropolymerization
    • Monomers
    • Organic polymers
    • Thiophenes

    Keywords

    what are keywords

    Article keywords are supplied by the authors and highlight key terms and topics of the paper.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Recommended

    Log in to Access

    You may have access to this article with your ACS ID if you have previously purchased it or have ACS member benefits. Log in below.

    • Purchase access

      Purchase this article for 48 hours $48.00 Add to cart

      Purchase this article for 48 hours Checkout

    Cited By

    Click to copy section linkSection link copied!

    This article has not yet been cited by other publications.

    Download PDF

    Get e-Alerts

    Get e-Alerts

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2025, XXXX, XXX, XXX-XXX

    Click to copy citationCitation copied!

    Published April 21, 2025

    Publication History

    • Received

    • Accepted

    • Revised

    • Published

      online

    © 2025 American Chemical Society

    Request reuse permissions

    Article Views

    78

    Altmetric

    -

    Citations

    -

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

    Recommended Articles

    Conductivity of Electropolymerized Thiophene Films: Effect of Fused-Ring Thiophenes as the Monomer (2025)
    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Pres. Lawanda Wiegand

    Last Updated:

    Views: 5769

    Rating: 4 / 5 (71 voted)

    Reviews: 94% of readers found this page helpful

    Author information

    Name: Pres. Lawanda Wiegand

    Birthday: 1993-01-10

    Address: Suite 391 6963 Ullrich Shore, Bellefort, WI 01350-7893

    Phone: +6806610432415

    Job: Dynamic Manufacturing Assistant

    Hobby: amateur radio, Taekwondo, Wood carving, Parkour, Skateboarding, Running, Rafting

    Introduction: My name is Pres. Lawanda Wiegand, I am a inquisitive, helpful, glamorous, cheerful, open, clever, innocent person who loves writing and wants to share my knowledge and understanding with you.